

Journal of Fluorine Chemistry 69 (1994) 241-247

Reactions of cycloalkanecarboxylic acids with SF_4 . IV. Fluorination of cyclohexanedicarboxylic acids with SF_4^{\star}

A.N. Alexeenko, V.P. Nazaretian*

Institute of Organic Chemistry, The Ukrainian Academy of Sciences, Kiev, 252094, Ukraine

Received 14 May 1993; accepted 25 April 1994

Abstract

Fluorination of *trans*-cyclohexan-1,2-dicarboxylic acid with SF₄ yields a cyclization product with a *trans* configuration, 7,7,9,9-tetrafluoro-*trans*-8-oxabicyclo[4.2.0]nonane. On heating 7,7,9,9-tetrafluoro-*cis*-8-oxabicyclo[4.2.0]nonane with HF, *trans*-2-trifluoromethylcyclohexanecarbonyl fluoride and *trans*-1,2-bis-(fluoroformyl)cyclohexane are obtained as major products. Cyclization was not observed on fluorination of *cis*-cyclohexan-1,3-dicarboxylic acid with SF₄.

Keywords: Cycloalkane carboxylic acids; Sulfur tetrafluoride; Fluorination; Stereochemistry; NMR spectroscopy

1. Introduction

cis-Cyclopropan-, cyclobutan- and cyclopentan-1,2dicarboxylic acids with SF₄ yield the corresponding cyclic $\alpha, \alpha, \alpha', \alpha'$ -tetrafluoro ethers together with trifluoromethyl-substituted cycloalkanes, while *trans* isomers yield only trifluoromethyl-substituted cycloalkanes [1-3]. The cyclization of cyclohexan-*trans*-dicarboxylic acids on fluorination with SF₄ is unknown despite the fact that the corresponding cyclohexan-*trans*-dicarboxylic acid anhydride has been isolated [4].

2. Experimental details

¹H and ¹⁹F NMR spectra were measured with a Bruker WP-200 (at 200.1 and 188.3 MHz respectively) NMR spectrometer using HMDS and CFCl₃ as internal standards, and acetone- d_6 as solvent. Low-temperature ¹⁹F NMR spectra were measured with a Varian VXR-300 NMR spectrometer (at 282.1 MHz) using acetone d_6 as solvent. ¹⁹F upfield chemical shift values are negative. ¹³C NMR spectra were measured with a Gemini 200 NMR spectrometer (at 50.3 MHz) using TMS as internal standard, and acetone- d_6 as solvent. Gas–liquid chromatography was carried out with a Chrom 5 chromatograph fitted with an FID using helium as the carrier gas, and employing a stainless-steel column $(2500 \times 3 \text{ mm})$ filled with 10% polyphenylmethylsiloxane on Chromatone AW (0.20–0.25 mm). Preparative GLC was carried out with a PACHV 07 chromatograph fitted with a thermal conductivity detector. A stainless-steel column $(2600 \times 12 \text{ mm})$ filled with 10% polyphenylmethylsiloxane on Chromatone N-AW-HMDS (0.32-0.40 mm) and with helium as the carrier gas was used. All boiling and melting points are reported uncorrected.

2.1. Treatment of carboxylic acids with SF_4 . General procedure

Method A

The acid (0.05 mol) and SF_4 (0.3 mol) were reacted in a stainless-steel cylinder under autogenous pressure, with the reaction time and temperature as indicated in Table 1. The gaseous products were released and the liquid residue subjected to ¹⁹F NMR spectral monitoring. The crude products were washed with 5% aqueous ammonia. Liquid products 2, 3, 7, 8 and 20 were isolated by steam-distillation, separated, dried over MgSO₄ and purified by distillation or by preparative GLC. Solid products 15 and 16, obtained by filtration of the residue, were dried and crystallized from benzene. *Method B*

Sulfur tetrafluoride (1 g, 10 mmol) was bubbled through a solution of the acid (0.2 g, 1.2 mmol) in anhydrous hydrogen fluoride (1 g, 50 mmol). HF was removed and the residue subjected to ¹⁹F NMR spectral

^{*}Dedicated to Professor L.M. Yagupolskii on the occasion of his 70th birthday.

^{*}Corresponding author.

Acid	Method	Temperature (°C)	Time (h)	Composition of reaction mixture (%)								
				CF ₃ CF ₃		F_2 F_2						
				cis (2)	trans (7)	cis (3)	trans (8)	cis (11)	trans (9)	cis (12)	cis (13)	trans (10)
1	в	20		0	0	0	0	0	0	0	100	0
1	Ā	20	8	0	0	18	0	4	0	7	71	0
î	A	60	3	2	0	60	0	11	0	4	23	0
1	А	100	3	8	2	67	0	4	2	5	12	0
1	А	140	3	4	8	64	7	0	10	2	5	0
6	в	20	-	0	0	0	0	0	0	0	100	0
6	Α	20	8	0	0	0	17	0	3	0	0	80
6	Α	60	3	0	0	0	20	0	11	0	0	69
6	Α	140	3	0	4	3	69	0	23	0	0.5	0.5
17	в	20	_	0	0	0	0	100	0	0	0	0
17	Α	140	6	30	50	0	0	0	20	0	0	0
17 ^a	Α	140	6	45	30	0	0	0	25	0	0	0
18	в	20	_	0	0	0	0	0	100	0	0	0
18	Α	140	6	0	5	0	0	0	95	0	0	0
18 ^a	А	140	6	0	60	0	0	0	40	0	0	0
19	А	-6	18	90	of 20						10 c	of 21
19	Α	20	18	100	of 20							

Table 1 Reactions of cyclohexanecarboxylic acids with SF_4

^aWith added HF (0.05 mol).

monitoring. The physical properties and analyses of the products are given in Table 2, and NMR data in Table 3.

2.2. Hydrolysis of carboxylic acid amides. General procedure

Sodium nitrite (0.05 mol) was added to a solution of amides 15 or 16 (0.01 mol) in 15 ml of 70% sulfuric acid and the reaction mixture heated at 70 °C for 0.5 h. The reaction mixture was then diluted with cold water, extracted with ether and dried over MgSO₄. After removal of the solvent, the product 17 was purified by distillation, and product 18 was purified by sublimation.

2.3. Hydrogenation of 1, 2-bis(trifluoromethyl)benzene (4), 1H, 3H-1, 1, 3, 3-tetrafluorophthalane (5) and 2trifluoromethylbenzamide (14). General procedure

A solution consisting of compound 4, 5 or 14 (0.05 mol) in 20 ml of trifluoroacetic acid and $PtO_2 \cdot H_2O$ [5] was shaken under hydrogen (0.11 MPa). The catalyst was filtered off and the filtrate washed with water and with 10% aqueous sodium bicarbonate. The product (2 or 3) was dried over MgSO₄ and distilled. The product 15 was filtered and purified by sublimation.

2.4. Isomerization of cis-2-trifluoromethylcyclohexane-1carbamide (15)

A solution of compound 15 (1 g, 5 mmol) in 2 ml of 50% aq. acetic acid was passed through a column (20–25 °C, 20×1 cm) packed with Al₂O₃. The filtrate was neutralized with 30% aq. sodium hydrocarbonate and the precipitated product filtered and purified by sublimation to yield 0.7 g (70%) of compound 16.

2.5. Treatment of 7,7,9,9-tetrafluoro-cis-8-oxabicyclo-[4.2.0]nonane with HF

A solution of 7,7,9,9-tetrafluoro-*cis*-8-oxabicyclo-[4.2.0]nonane (3) (0.5 g, 2.5 mmol) in anhydrous HF (1 g, 50 mmol) was heated in a stainless-steel cylinder at a temperature of 140 °C for 1 h. ¹⁹F NMR spectral monitoring of the reaction mixture showed the presence of compounds 9 (42%), 10 (42%), 12 (2%) and 13 (14%).

3. Results and discussion

As reported previously [6], fluorination of *cis*cyclohexan-1,2-dicarboxylic acid with SF_4 at 60 °C and 100 °C yields 7,7,9,9-tetrafluoro-8-oxabicyclo-[4.2.0]nonane (70% and 59%) and 1,2-bis(tri-

Table 2 Physical properties and yields of compounds prepared

Compound No.	B.p. [m.p.] (℃)	$n_{\rm D}^{21}$	d_4^{21} (g cm ⁻³)	Elemental analyses				
					Found (%)	Molecular formula	Calc. (%)	(%)
2	145	1.3592	1.3422	С	43.8	$C_8H_{10}F_6$	43.7	5ª
				Н	4.6		4.6	
3 ^b	170	1.3870	1.2960	С	43.5	$C_8H_{10}F_4O$	43.6	60
				н	4.4		4.6	
7	141	1.3540	1.3452	С	43.7	$C_8H_{10}F_6$	43.7	5*
				н	4.6		4.6	
8	162-163	1.3803	1.3358	\mathbf{F}	51.5	$C_8H_{10}F_4O$	51.8	55
15	[107–108]	-	-	С	49.1	$C_8H_{12}F_3NO$	49.2	5"
				н	6.1		6.2	
				N	7.2		7.2	
16	[181-183]	-	-	С	48.9	$C_8H_{12}F_3NO$	49.2	15
				Н	6.1		6.2	
				N	7.1		7.2	
17	100/2 mmHg	1.4180	1.2857	С	50.5	$C_8H_5F_3O_2$	50.5	85
				н	2.5		2.6	
18	[60-62]	-	-	С	50.4	$C_8H_5F_3O_2$	50.5	90
				н	2.6		2.6	
20	137	1.3520	1.3051	С	43.6	$C_8H_{10}F_6$	43.7	72
				н	4.6		4.6	

*After purification by preparative GLC.

^bLit. value [6]: b.p. 169 °C; n_D^{20} 1.3820; d_4^{20} 1.2944.

fluoromethyl)cyclohexane (3% and 7%), respectively. It was noted that acids with the carboxylic groups in the *cis* positions were particularly favourable towards cyclization, affording cyclic ethers in the highest yields.

We have found that the *trans*-carboxylic groups of cyclohexan-1,2-dicarboxylic acid (6) also give the cyclization product, 7,7,9,9-tetrafluoro-*trans*-8-oxabicyclo-[4.2.0]nonane (8) in high yield. To determine the structure of one we undertook, as in a previous study [6], the fluorination of *cis*-cyclohexan-1,2-dicarboxylic acid (1) with SF_4 .

From its spectroscopic and physical properties, 7,7,9,9tetrafluoro-*trans*-8-oxabicyclo[4.2.0]nonane (8) prepared by the fluorination of *trans*-cyclohexan-1,2-dicarboxylic acid (6) could be distinguished from the compound prepared by fluorination of *cis*-cyclohexan-1,2-dicarboxylic acid (1) with SF₄. However, 7,7,9,9tetrafluoro-*cis*-8-oxabicyclo[4.2.0]nonane (3) prepared from 1,1,3,3-tetrafluorophthalane (5) [7] by hydrogenation [8] was identical to the compound prepared by fluorination of *cis*-cyclohexan-1,2-dicarboxylic acid (1) with SF₄. A similar picture was observed in the case of 1,2-bis(trifluoromethyl)cyclohexane (2) (Scheme 1).

These data together with certain additional evidence, as given below, allow the interpretation of the results of fluorination as follows.

Fluorination of *trans*-cyclohexan-1,2-dicarboxylic acid (6) with SF_4 yields mainly the *trans* products 7–10 (Scheme 2).

Scheme 2.

Fluorination of *cis*-cyclohexan-1,2-dicarboxylic acid (1) with SF_4 yields the *cis* products 2, 3 and 11-13 together with smaller amounts of the *trans*

Table	3			
NMR	data	for	compounds	prepared

Formula	Nucleus number		Signal struct.	Chemical shift δ (ppm)	J (Hz)	
2 10 CF3 1 12 5 4 3 -H	C C C	1, 2 3, 8 4, 7	q q s	128.1 40.8 24.0	${}^{1}J_{1-9} = {}^{1}J_{2-10} = 285$ ${}^{2}J_{3-10} = {}^{2}J_{8-9} = 28$	
6 H	C F F	5, 6 9, 10 9	s m d	23.2 -65.2 -68.6 ^a	${}^{3}J_{0,11} = 10$	
cis-(a,e) (2)	F H	10 11, 12	d m	59.5ª 2.8	${}^{3}J_{10-12} = 10$	
12 . F	С	1, 2	dd	130.8	${}^{1}J_{1-17} = {}^{1}J_{1-18} = 270$	
H_2^{13} H_2^{14} H_2^{14} H_3^{2}	С	3, 8	dd	41.6	$J_{2-9} = J_{2-10} = 270$ $2J_{3-10} = 2J_{3-9} = 25$ $2J_{8-17} = 2J_{8-18} = 25$	
$\begin{array}{c} 1 \\ H_2 \\ T_1 \\ T_2 \\ T_1 \\ T_2 \\ T_1 \\ T_2 \\ T_1 \\ T_2 \\ T_2 \\ T_1 \\ T_2 \\ T_1 \\ T$	C C	4, 7 5, 6	S S	22.1 21.7		
H_2 F_{IS} cis-(a,c)	F	9, 17	dd AB	- 69.0	${}^{2}J_{9-10} = {}^{2}J_{17-18} = 143.0$ ${}^{3}J_{9-11} = {}^{3}J_{17-16} = 10.3$ ${}^{2}J_{10} = {}^{2}J_{10} = {}^{2}J_{10} = 143.0$	
(3)	Г	10, 18		-77.7	${}^{3}J_{10-11} = {}^{3}J_{18-16} = 10.3$	
	н	11, 16	m	2.9		
5 4 3 - CF3	Н	12-15	m	1.6		
o <i>r</i> <i>s</i> <i>C</i> <i>F</i> <i>H</i> <i>trans-(e,e)</i>	C C F	1, 2 3, 8 4–7 9, 10	q q s m	41.5 25.0 - 68.2	${}^{2}J_{1-9} = {}^{2}J_{2-10} = 285$ ${}^{2}J_{3-10} = {}^{2}J_{8-9} = 28$	
(7)	-	<i>,</i> , , , , , , , , , , , , , , , , , , ,		00.2		
$\begin{array}{c} 12 & 10 \\ H_2^{f1}F_2 \\ 13 \\ H_2 \\ r^4 \\ r^2 \end{array}$	C C	1, 2 3, 8	t m	129.4 47.0	${}^{1}J_{1-9} = {}^{1}J_{2-10} = 270$	
	C	4,7	s	24.7		
$H_2 \sim 7 1 1$ $15H F_2$	F	9, 10	s AA'BB'	- 80,5		
H ₂ ¹¹ + 2	Н	11, 16	m	2.0		
trans-(e,e) (8)	H H	12, 15 13, 14	AB m	1.6 1.1	$J_{\rm AB} = 10.0$	
H ³ -CF ₃						
H H	F F	1 2	d s	-71.3 36.4	${}^{3}J_{1-3} = 8.0$	
(9)						
H-COF	न	1. 2	s	35 3		
H H	•	~, -	5	5.50		

H
 trans-(e,e)
 (10)

Table 3 (continued)

Formula	Nucle	eus number	Signal struct.	Chemical shift δ (ppm)	J (Hz)
H^{3} CF_{3} H CoF^{2} $cis-(a,e)$ (11)	F F	1 2	d s	- 68.4 35.9	${}^{3}J_{1-3} = 8.5$
(12)	F F F	1 2 4	dd AB dd AB s	- 89.3 - 72.4 47.1	${}^{2}J_{1-2} = 138.0,$ ${}^{3}J_{1-3} = 13.0$ ${}^{2}J_{2-1} = 138.0,$ ${}^{3}J_{2-3} = 13.0$
COF H $Cis-(a,e)$ (13)	F	1, 2	S	35.9	
$\begin{array}{c} \begin{array}{c} & & & H^{z} \\ H_{2} & H_{2} & -CF_{3} \\ H_{2} & H_{2} & CF_{3} \\ H_{2} & CONH_{2} \\ \hline \\ Cis-(a,e) \\ (15) \end{array}$	H F H H	1 2 36 7 8	q d m m bs	2.3 68.6 1.0-2.0 2.8 6.1(6.8)	${}^{3}J_{1-2} = 8.8$ ${}^{3}J_{2-1} = 8.8$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ H_{2} \\ \end{array}\\ \begin{array}{c} \end{array}\\ H_{2} \\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ H_{2} \\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array}	F H H H	1 2 3–6 7 8	d qd m m bs	- 70.5 2.4 1.0-2.0 2.6 6.2(6.9)	${}^{3}J_{1-2} = 8.3$ ${}^{3}J_{2-1} = 8.3, \; {}^{3}J_{2-7} = 3.6$
H ² -CF ₃ H COOH cis-(a,e) (17)	F	1	d	- 68.0	${}^{3}J_{1-2} = 8.5$
H H COOH H	F	1	d	- 70.8	${}^{3}J_{1-2} = 7.4$

trans-(e,e) (**18**)

(continued)

Table 3 (continued)

Formula	Nucleus number		Signal struct.	Chemical shift δ (ppm)	J (Hz)	
$CF_{3} - H - CF_{3}$	F	1, 3	d	- 73.7	${}^{3}J_{1-2} = {}^{3}J_{3-4} = 7.8$	
$\frac{2}{cis-(e,e)}$	F	1, 2	s	39.7		

products 7-9 at temperatures of 100 °C and over (Scheme 3).

Cleavage of 7,7,9,9-tetrafluoro-*cis*-8-oxabicyclo-[4.2.0]nonane (3) in the presence of HF with formation of 2-trifluoromethylcyclohexanecarbonyl fluoride has been described previously [6], but whether the structure of the compound was *cis* or *trans* was not determined. We found that 7,7,9,9-tetrafluoro-*cis*-8-oxa-bicyclo[4.2.0]nonane (3) in the presence of HF at 100 °C and higher temperatures undergoes cleavage mainly into the *trans* products 9 and 10 (Scheme 4).

The structures of the fluoroanhydrides 9 and 11 were proved by ammonolysis into amides 16 and 15, followed by acid hydrolysis into acids 17 and 18. Amide 15 was also prepared by the hydrogenation of 2-trifluoromethylbenzamide (14) [7] in accordance with a previous method [8]. It is interesting to note that isomerization of *cis*-2-trifluoromethylcyclohexanecarboxylic acid amide (15) into the *trans* isomer 16 takes place on passing a solution through an Al_2O_3/HAc column at room temperature (Scheme 5).

Scheme 4.

Scheme 5.

Fluorination of *cis*-2-trifluoromethylcyclohexane-1carboxylic acid (17) with SF_4 at 140 °C proceeds with isomerization to yield the *cis*- and *trans*-1,2-bis(trifluoromethyl)cyclohexanes 2 and 7 and *trans*-2-trifluoromethylcyclohexanecarbonyl fluoride (9) (Scheme 6).

On fluorination of *trans*-2-trifluoromethylcyclohexane-1-carboxylic acid (18) with SF₄ at 140 °C, formation of the *cis* products was not observed and the main

Scheme 6.

Scheme 7.

product was *trans*-2-trifluoromethylcyclohexanecarbonyl fluoride (9) (Scheme 7).

Fluorination of *trans, cis, trans*-1,2,3,4-cyclopentanetetracarboxylic acid with SF_4 yields products corresponding to 1,3-cyclization of the carboxylic groups [3]. The possibility of some 1,3-cyclization could not be excluded. However, fluorination of *cis*-1,3-cyclohexanedicarboxylic acid (19) with SF_4 yields *cis*-1,3bis(trifluoromethyl)cyclohexane (20) as a major product, and the formation of the products of 1,3-cyclization was not observed (Scheme 8).

It is well known [9] that in a *cis*-1,2-disubstituted cyclohexane one substituent must be axial and the other equatorial. In *trans*-1,2-disubstituted compounds, both may be equatorial or both axial, but for 1,3-compounds the reverse applies; the *trans* isomer must have the *ae* conformation and the *cis* isomer may be *aa* or *ee*. Since both *cis*- and *trans*-1,2-bis(trifluoromethyl)cyclohexanes 2 and 7 and *cis*-1,3-bis(trifluoromethyl)cyclohexane (19) were available, assignment of the NMR chemical shifts of trifluoromethyl groups as *e* or *a* was readily determined.

As shown in Ref. [10], the ¹⁹F NMR chemical shift of axial CF₃ groups is less than that of equatorial CF₃ groups in 4-substituted cyclohexanes (-67 and -74ppm). Controlled cooling of *cis*-1,2-bis(trifluoromethyl)- cyclohexane (2) led to an extreme broadening of the ¹⁹F signal (-24.5 °C) at -65.2 ppm and separation (-67 °C) into two peaks at -59.5 (a) and -68.6 ppm (e). (Measurement of the areas under the resolved peaks gave the *ea* equilibrium constant K as 5.73×10^{-3} and hence, the *ea* free energy difference $\Delta G_{\rm CF3}$ as 10.2 kcal mol⁻¹.) The broad ¹⁹F signal at -68.2 ppm for *trans*-1,2-bis(trifluoromethyl)cyclohexane (7) on this basis may be attributed to the *ee* conformer. Vicinal HF coupling constants were poorly resolved and estimation by peak half-width gave a value of approximately 8–10 Hz.

As shown in Ref. [11], ¹⁹F NMR chemical shift values for axial and equatorial CF_3 groups are -65.4 and -73.3 ppm in *trans*-1,3-bis(trifluoromethyl)cyclohexane. ¹⁹F The doublet at -73.7 ppm for *cis*-1,3bis(trifluoromethyl)cyclohexane (19) may be attributed to the *ee* conformer. Apparently, the carboxyl groups of starting acid 19 are also in the ee conformation. This is in accord with its ability to readily yield trifluoromethyl derivatives with SF₄. In contrast to equatorial carboxyl groups, the axial groups in cyclohexane-1,1-dicarboxylic acid yield only the fluoroanhydride with SF_4 even under forced conditions [12]. Recently this has also been noted in the fluorination of cyclohexane-1,1,4,4-tetracarboxylic acid with SF_4 [13].

In agreement with the present experimental data, we assume that isomerization must occur at the carbonyl fluoride stage, where the α -hydrogen atom has sufficient mobility for enolization.

References

- [1] Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian and L.B. Faryat'eva, J. Fluorine Chem., in press.
- [2] Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian and A.B. Rozhenko, J. Fluorine Chem., in press.
- [3] Yu.M. Pustovit, P.I. Ogojko and V.P. Nazaretian, J. Fluorine Chem., in press.
- [4] H.K. Hall, J. Am. Chem. Soc., 80 (1959) 6412.
- [5] R. Adams and R.L. Shriner, J. Am. Chem. Soc., 45 (1923) 2175.
- [6] W. Dmowski and R.A. Kolinski, Pol. J. Chem., 52 (1978) 71.
- [7] L.M. Yagupol'skii, Zh. Obshch. Khim., 30 (1960) 3444.
- [8] A.N. Blakitny, Yu.A. Fialkov and L.M. Yagupol'skii, Zh. Obshch. Khim., 6 (1970) 2055.
- [9] J. March, Advanced Organic Chemistry, McGraw-Hill, New York, 1977, Chap. 4.
- [10] E.W. Della, J. Am. Chem. Soc., 89 (1967) 5221.
- [11] A.N. Alekseenko and V.P. Nazaretian, Ukr. Khim. Zh., in press.
- [12] Yu.M. Pustovit and V.P. Nazaretian, J. Fluorine Chem., 55 (1991) 29.
- [13] C.R. Davis, D.C. Swenson and D.J. Burton, J. Org. Chem., 58 (1993) 6843.